Table 1. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{4}\right)$

	$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
Sb (1)	0.75	0.75	0.8461 (1)	206
$\mathrm{Cl}(1)$	0.0719 (2)	0.7059 (2)	0.3288 (3)	361
P (1)	0.25	0.75	0.5	241
F(1)	0.0523 (6)	0.6698 (7)	0.8461 (8)	485
F(2)	0.75	0.75	0.552 (1)	566
F(3)	0.75	0.75	1.139 (1)	458

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

Anion		Cation	
$\mathrm{Sb}(\mathrm{l})-\mathrm{F}(1)$	$1.864(5) \times 4$	$\mathrm{P}(1)-\mathrm{Cl}(1)$	$1.929(2) \times 4$
$\mathrm{Sb}(1)-\mathrm{F}(2)$	$1.924(9) \times 1$		
$\mathrm{Sb}(\mathrm{l})-\mathrm{F}(3)$	$1.912(8) \times 1$	$\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$	$109.15(8) \times 2$
		$\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$	$109.63(8) \times 4$

PCl_{4}^{+}. $\mathrm{Sb}, \mathrm{Nb}, \mathrm{Ta}$) $\mathrm{Cl}_{6}^{-} . \mathrm{AsCl}_{3}$ (Preiss \& Reich, 1971); PCl_{4}^{+}. . Cl_{4}^{-}(Shamir, Schneider, Bino \& Cohen, 1986); $\mathrm{PCl}_{4}^{+} . \mathrm{PCl}_{6}^{-}$(Clark, Powell \& Wells, 1942). The investigated crystal of the title compound is isomorphous with the crystals of the compounds $\mathrm{AsCl}_{4}^{+} . \mathrm{AsF}_{6}^{-}$(Preiss, 1971a; Minkwitz, Nowicki \& Borrmann, 1991) and $\mathrm{PCl}_{4}^{+} . \mathrm{PCl}_{6}^{-}$(Preiss, 1971b).

References

Baur, W. H. \& Wenninger, G. (1969). SADIAN. Program for calculation of atomic distances and angles in crystal structures. Univ. of Illinois, Chicago, USA.
Clark, D., Powell, H. M. \& Wells, A. F. (1942). J. Chem. Soc. pp. 642-654.

Collins, P. H. \& Webster, M. (1972). Acta Cryst. B28, 1260-1264.
ErdbrügGer, C. F., Jones, P. G., Schelbach, R., Schwarzmann, E. \& Sheldrick, G. M. (1987). Acta Cryst. C43, 1857-1859.
Keller, E. (1986). SCHAKAL. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
Kistenmacher, T. J. \& Stucky, G. D. (1968). Inorg. Chem. 7, 2150-2155.
Kistenmacher, T. J. \& Stucky, G. D. (1971). Inorg. Chem. 10, 122-132.
Krebs, B., Buss, B. \& Berger, W. (1973). Z. Anorg. Allg. Chem. 397, 1-15.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Minkwitz, R., Nowicki, J. \& Borrmann, H. (1991). Z. Anorg. Allg. Chem. 596, 93-98.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Preiss, H. (1971a). Z. Anorg. Allg. Chem. 380, 45-50.
Preiss, H. (1971b). Z. Anorg. Allg. Chem. 380, 51-55.
Preiss, H. (1971c). Z. Anorg. Allg. Chem. 380, 56-64.
Preiss, H. \& Reich, P. (1971). Krist. Tech. 6, 375-380.
Shamir, J., Luski, S., Bino, A., Cohen, S. \& Gibson, D. (1985). Inorg. Chem. 24, 2301-2309.
Shamir, J., Schneider, A., Bino, A. \& Cohen, S. (1986). Inorg. Chim. Acta, 114, 35-39.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet $R 3 m / V$ crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre. Oxford: Clarendon Press. Taylor, J. C. \& Waugh, A. B. (1983). Polyhedron, 2, 211-216.
Zelezny, W. F. \& Baenziger, N. C. (1952). J. Am. Chem. Soc. 74, 6151-6152.
Ziegler, M. L., Nuber, B., Weidenhammer, K. \& Hoch, G. (1977). Z. Naturforsch. Teil B, 32, 18-21.

Acta Cryst. (1992). C48, 1650-1652

Structure of Aluminium Disodium Trihydrogenbis(diphosphate)

By S. Galí
Departament dee Cristallografía, Universitat de Barcelona, Martí i Franquès s.n., Barcelona 08028, Catalonia, Spain

A. CÁrdenas*
Departamento de Física, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile

and K. Byrappa and G. S. Gopalakrishna
Mineralogical Institute, University of Mysore, Manasagangotri, Mysore 570006, India

(Received 25 March 1991; accepted 13 January 1992)

[^0]$99.67(2), \quad \beta=81.77(2), \quad \gamma=114.48(1)^{\circ}, \quad V=$ 268.2 (4) $\AA^{3}, Z=1, D_{x}=2.624 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=$ $0.7107 \AA, \mu=9.31 \mathrm{~cm}^{-1}, \quad F(000)=210, T=293 \mathrm{~K}$, $R=0.032$ for 761 independent observed reflections. The Al octahedron shares two opposite edges with
two diphosphate anions. In each anion, one PO_{4} tetrahedron connects two Al octahedra, forming an $\mathrm{Al}-\left(\mathrm{P}_{1}, \mathrm{P}_{1}\right)$ - Al chain parallel to the c axis. The H atoms are thought to lie around the inversion centres at $\left(\frac{1}{2} 0\right),\left(\frac{1}{2} 0 \frac{1}{2}\right)$ and $\left(0 \frac{11}{2}\right)$ where small residual difference peaks were found. Na ions are located in tunnelshaped cavities parallel to \mathbf{c}.

Experimental. Crystals of the title compound were grown by the hydrothermal technique using Moreytype autoclaves at 530 K and 10 MPa . The starting materials $\left(\mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}\right.$ and $\mathrm{H}_{2} \mathrm{O}$ in molar ratio $4: 1: 17.5: 4$) were placed in a teflon liner. After 7 d crystals of 0.1 to 1 mm in size were obtained. They were colourless, with a pseudo-rhombohedral shape and vitreous lustre. Details of the synthesis will be published elsewhere. The preliminary impedance spectroscopic studies carried out on these crystals show high ionic conductivity of the order of $4.1 \times 10^{-1} \Omega^{-1} \mathrm{~cm}^{-1}$ and activation energy of 0.3 eV at 1 KHz internal frequency and 573 K . A detailed study of the conduction mechanism with reference to the location of Na and H ions in the structure is under progress.

A pseudo-rhombohedral shaped edge-rounded isometric crystal with dimension 0.15 mm was used for data collection on a Philips 1100 diffractometer, with graphite monochromator. Cell dimensions were determined from setting angles of 17 reflections with $4<\theta<10^{\circ}$. Intensities were collected from $\omega / 2 \theta$ scans (scan rate $0.03^{\circ} \mathrm{s}^{-1}$, width 1.2° in ω). 783 unique intensities with $2<\theta<25^{\circ}$ were collected, of which 22 were considered unobserved under the condition $I<2.5 \sigma(I)$. No absorption correction was applied. $-9 \leq h \leq 9,-8 \leq k \leq 8,0 \leq l \leq 5$. Three standard reflections ($\overline{1} \overline{3} \overline{3}, 2 \overline{2} \overline{1}$ and $\overline{2} \overline{2} 1$) monitored every 2 h showed no variation. The structure was solved by direct methods using the MULTAN80 system of programs (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). E maps generated with 284 independent structure factors revealed fragments of diphosphate anions. With these, most of the remaining atoms were found by tangent-formula refinement of the difference structure factors (Beurskens, Bosman, Doesburg, Gould, van den Hark, Prick, Noordik, Beurskens \& Parthasarathi, 1981). Some O atoms were finally found by difference Fourier synthesis. Refinements were carried out by the program SHELX76 (Sheldrick, 1976). Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ values were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). Difference syntheses did not reveal H -atom positions with clarity. Anisotropic displacement parameters were adjusted for all other atoms. Final $R=0.032(w R=0.036)$. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where w^{-1} $=\left[\sigma^{2}\left(F_{o}\right)+0.000855 F_{o}^{2}\right] / 0.9728$. Maximum $\Delta / \sigma=$

Table 1. Atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses $B_{\text {eq }}=\left(8 \pi^{2} / 3\right)\left(U_{11}+U_{22}+U_{33}\right)$ for the orthogonalized $U_{i j}$ tensor.

	x	y	z	$\boldsymbol{B}_{\text {cq }}$
Al	0.0	0.0		0.0
$\mathrm{P}(1)$	$0.2617(1)$	$0.0801(1)$	$0.4524(2)$	$0.72(6)$
$\mathrm{P}(2)$	$0.2300(1)$	$0.4259(1)$	$0.2839(2)$	$0.82(4)$
$\mathrm{O}(1)$	$0.2114(3)$	$0.0409(4)$	$-0.2513(5)$	$0.9(1)$
$\mathrm{O}(2)$	$0.0810(3)$	$0.2728(4)$	$0.1229(5)$	$1.0(1)$
$\mathrm{O}(3)$	$0.1182(3)$	$-0.0443(4)$	$0.2598(5)$	$0.9(1)$
$\mathrm{O}(4)$	$0.3090(3)$	$0.3123(4)$	$0.4389(6)$	$1.2(1)$
$\mathrm{O}(5)$	$0.4325(3)$	$0.0503(4)$	$0.3419(5)$	$1.2(1)$
$\mathrm{O}(6)$	$0.3834(4)$	$0.5614(4)$	$0.1068(6)$	$1.6(1)$
$\mathrm{O}(7)$	$0.1637(4)$	$0.5558(4)$	$0.5045(6)$	$1.7(1)$
Na	$0.2850(2)$	$0.7788(3)$	$-0.0913(3)$	$1.81(8)$

Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Al octahedron					
$\mathrm{Al}-\mathrm{O}(1)$		1.940 (3)		$\mathrm{O}(1)-\mathrm{O}(2)$	2.715 (3)
$\mathrm{Al}-\mathrm{O}(2)$		1.855 (2)		$\mathrm{O}(1)-\mathrm{O}(3)$	2.616 (4)
$\mathrm{Al}-\mathrm{O}(3)$		1.859 (2)		$\mathrm{O}(2)-\mathrm{O}(3)$	2.680 (3)
$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$		2.653 (3)		$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}(2)$	91.3 (1)
$\mathrm{O}(1)-\mathrm{O}\left(3^{\prime}\right)$		2.756 (4)		$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}(3)$	87.0 (1)
$\mathrm{O}(2)-\mathrm{O}\left(3^{\prime}\right)$		2.571 (3)		$\mathrm{O}(2)-\mathrm{Al}-\mathrm{O}(3)$	92.4 (1)
$\mathrm{P}_{2} \mathrm{O}_{7}$ anion					
$\mathrm{P}(1)$	$\mathrm{O}\left(\mathrm{l}^{12}\right)$		$\mathrm{O}(3)$	O(4)	O(5)
$\mathrm{O}\left(1^{\text {" }}\right.$)	1.495 (3)		114.1 (2)	108.2 (2)	111.2 (1)
$\mathrm{O}(3)$	2.522 (4)		$1.510(3)$	108.3 (1)	109.3 (1)
$\mathrm{O}(4)$	2.506 (4)		2.521 (4)	1.599 (3)	105.2 (1)
$\mathrm{O}(5)$	2.500 (3)		2.484 (3)	2.489 (3)	1.534 (3)
P (2)	$\mathrm{O}(2)$		$\mathrm{O}(4)$	$\mathrm{O}(6)$	O(7)
$\mathrm{O}(2)$	1.500 (3)		108.8 (1)	114.2 (2)	110.9 (1)
O(4)	2.512 (3)		1.587 (3)	106.4 (1)	107.4 (2)
$\mathrm{O}(6)$	2.532 (4)		2.484 (4)	$\underline{1.515(3)}$	108.8 (2)
$\mathrm{O}(7)$	2.487 (4)		2.503 (4)	2.466 (4)	1.519(3)
$\mathbf{P}(1)-\mathbf{P}(2)$	2.926 (1)		$\mathrm{P}(1)-\mathrm{O}$	- $\mathrm{P}(2) \quad 133.3$ (2)	

Na polyhedron (distances shorter than $3.000 \AA$)
Na

$\mathrm{O}\left(1^{\text {ii" }}\right)$	$2.517(3)$	$\mathrm{O}\left(5^{v}\right)$	$2.419(3)$
$\mathrm{O}\left(2^{\text {iv }}\right)$	$2.929(3)$	$\mathrm{O}(6)$	$2.452(3)$
$\mathrm{O}\left(3^{\text {iiI }}\right)$	$2.577(3)$	$\mathrm{O}\left(7^{\text {vi }}\right)$	$2.397(3)$
$\mathrm{O}\left(5^{\text {iii }}\right)$	$2.701(3)$	Mean	2.570

Hydrogen-bond distances
$\mathrm{O}(5)-\mathrm{H}(1) \cdots \mathrm{O}\left(5^{n 11}\right) \quad 2.405$ (5)
$\mathrm{O}(6)-\mathrm{H}(2) \cdots \mathrm{O}\left(6^{\text {nin }}\right) \quad 2.494$ (5)
$\mathrm{O}(7)-\mathrm{H}(3) \cdots \mathrm{O}\left(7{ }^{7}\right) \quad 2.500$ (5)
Symmetry code: (i) $-x,-y,-z$; (ii) $x, y, z+1$; (iii) $x, y+1, z$; (iv) $-x$, $-y+1,-z$; (v) $-x,-y+1,-z+1$; (vi) $x, y, z-1$; (vii) $-x+1,-y$, $-z+1 ;$ (viii) $-x+1,-y+1,-z$.

Fig. 1. Projection of the structure of $\mathrm{Na}_{2} \mathrm{AlH}_{3}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$ along the c axis. Broken lines indicate hydrogen bonds.
0.01 . Maximum and minimum peak heights in the final difference Fourier synthesis were 0.48 and $-0.46 \mathrm{e} \AA^{-3}$. Final atomic coordinates and B_{eq} values are reported in Table 1.*

Related literature. Unindexed powder diffraction data for $\mathrm{Na}_{2} \mathrm{AlH}_{3}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$ were reported previously by two independent groups (Pintard-Scrépel, Dorémieux-Morin \& d'Yvoire, 1981; Grunze \& Grunze, 1984). The results of the first group are in accord with those reported here whereas Grunze \& Grunze described polymorphs of a compound they believed to be $\mathrm{NaAlH}_{4}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$. However, the lattice spacings for one of these match fairly well those of our compound. Doubt remains whether the second structure found by Grunze \& Grunze is a polymorphic phase of $\mathrm{NaAlH}_{3}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$; it may correspond to a different compound with the composition attributed to it by these authors.

The atomic arrangement of $\mathrm{Na}_{2} \mathrm{AlH}_{3}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$ projected along the c axis is shown in Fig. 1. Distorted O_{6} octahedra about Al share two opposite edges [$\mathrm{O}(2)-\mathrm{O}(3)$] with two diphosphate anions. These octahedra are connected by two symmetry related $P(1)$ tetrahedra, forming a chain parallel to [001].

[^1]The chains are held together by the three hydrogen bonds in directions [100], [010] and [110].
Table 2 reports the main interatomic distances and bond angles. The diphosphate anion shows the expected features: the average $\mathrm{P}-\mathrm{O}$ bond length is $1.532 \AA$ and the $\mathrm{P}(1)-\mathrm{O}(4)-\mathrm{P}(2)$ angle is 133.3°. The Na^{+}ions lie in tunnel cavities parallel to [001], with seven O -atom neighbours at distances shorter than $3 \AA$. The mean $\mathrm{Na}-\mathrm{O}$ distance $[2.570 \AA]$ is very similar to the values encountered in other ionic Na conductors.

We thank the staff of Servei de Microscopia Electrònica, University of Barcelona, for microanalysis and scanning electron microscopy facilities.

References

Beurskens, P. T., Bosman, W. P., Doesburg, h. M., Gould, R. O., van den Hark, Th. E. M., Prick, P. A. J., Noordik, J. H., Beurskens, G. \& Parthasarathi, V. (1981). DIRDIF. Tech. Rep. 1981/2. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Grunze, I. \& Grunze, H. (1984). Anorg. Allg. Chem. 512, 39-41.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P., \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pintard-Scrépel, M., Dorémieux-Morin, C. \& d'Yvoire, F. (1981). J. Solid State Chem. 37, 85-94.

Sheldrick, G. M. SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Structural Investigations of Nickel(II) Complexes. X. Tris(3,5-dimethylpiperidine)bis(isothiocyanato)nickel(II), $\mathbf{N i}(\mathbf{N C S})_{2}\left(\mathbf{3 , 5}\right.$-diMepip) $\left.{ }_{3}\right]$

By M. Koman, E. Jóna and E. Ďurčanská
Department of Inorganic Chemistry, Slovak Technical University, CS-81237 Bratislava, Czechoslovakia

(Received 19 March 1991; accepted 13 January 1992)

Abstract

Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~N}\right)_{3}\right], M_{r}=514.5\), triclinic, $P \overline{1}, a=10.41$ (1),$b=10.63$ (2),$c=13.63$ (2) $\AA, \alpha=$ 81.8 (1), $\quad \beta=76.6(1), \quad \gamma=69.8(1)^{\circ}, \quad V=$ 1373.7 (4.1) $\AA^{3}, Z=2, D_{m}=1.19, D_{x}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71070 \AA, \mu=8.7 \mathrm{~cm}^{-1}, F(000)=556$, room temperature, $R=0.0568, w R=0.0567$ for 975 reflections with $I \geq 3 \sigma(I)$. The crystal is formed by monomeric units of $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(3,5-\text { diMepip })_{3}\right]$. The two N atoms of two NCS groups and three 3,5diMepip ligands define a tetragonal pyramid about the Ni atom. The axial site contains a 3,5 -diMepip

0108-2701/92/091652-03\$06.00
ligand and the basal plane pairs of trans NCS^{-}and 3,5-diMepip ligands.

Experimental. Green prism-shaped crystals of poor quality, $0.51 \times 0.31 \times 0.23 \mathrm{~mm}$; density measured by flotation. A Syntex $P 2_{1}$ four-circle diffractometer with graphite-monochromated Mo $K \alpha$ radiation was used for data collection. 15 reflections with $4.91 \leq \theta$ $\leq 12.72^{\circ}$ were used for determination of the lattice parameters. Absorption and extinction were ignored. Intensity measurements from $\theta-2 \theta$ scans where made

[^0]: Abstract. $\mathrm{Na}_{2} \mathrm{AlH}_{3}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}, M_{r}=423.9$, triclinic, $P \overline{1}$, $a=8.311$ (4), $\quad b=7.363$ (4), $\quad c=4.902$ (3) $\AA, \quad \alpha=$

 * Present address: Departament de Cristallografia, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55081 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Ches' ${ }^{\prime}$ r CH1 2HU, England. [CIF reference: MU0258]

